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LE’ITER TO THE EDITOR 

Dynamic critical exponent of some Monte Carlo algorithms for 
the self-avoiding walk 

Sergio Caracciolot and Alan D SokalSB 
t Scuola Normale Superiore and INFN-Sezione di Pisa, Pisa, Italy 
$ Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New 
York, NY 10012, USA 

Received 23 May 1986 

Abstract. We discuss the dynamic critical behaviour of some Monte Carlo algorithms for 
the self-avoiding walk (SAW). For algorithms with local N-conserving elementary moves, 
we argue that the autocorrelation time behaves as 7 -  N P  with p =2+2u.  For the BFACF 
dynamics (a grand canonical algorithm), we present Monte Carlo data indicating that 
p = 2.2k0.5 for two-dimensional non-reversal random walks and p = 3.0k0.4 for two- 
dimensional SAW, values which are significantly less than 2+2u. 

The study of dynamic critical phenomena in statistical mechanical model systems is 
of interest for two reasons. First, and most obviously, to the extent that the mathematical 
dynamics is a reasonable model of a real physical dynamics, the conclusions are of 
direct physical interest. A second and more subtle reason arises out of the widespread 
use of dynamic Monte Carlo methods as a tool for studying the static properties of 
statistical mechanical systems (Binder 1979, 1984). Monte Carlo studies of critical 
phenomena have been greatly hampered by critical slowing down: the autocorrelation 
time T of the Monte Carlo stochastic process grows to infinity as the critical point is 
approached, which leads to a corresponding growth in the statistical error bars[[. The 
rate of growth of T is thus a crucial factor in determining the statistical efficiency of 
the Monte Carlo algorithm. 

In this letter we investigate the dynamic critical behaviour of some Monte Carlo 
algorithms for lattice models of polymer chains-in particular, for the self-avoiding 
walk (SAW), the non-reversal random walk (NRRW) and the ordinary random walk 
(ORW). For these models ‘criticality’ corresponds to the long-chain limit. The mean 
square end-to-end-distance of an N-step chain behaves asymptotically as 

( R k )  - N2” (1) 

5 Address after 1 September 1986: Department of Physics, New York University, 4 Washington Place, New 
York, NY 10003, USA. 
11 Each block of data of length d . 7  can be considered, roughly speaking, to contribute one ‘statistically 
independent’ data point. Therefore, the ‘effective sample size’ from a Monte Carlo run of length N is 
= N / h ,  resulting in statistical$ error bars of order ( s / N ) ” * .  For a more detailed treatment, see Binder 
(1979) 55  1.2.3 and 1.2.4, and Berretti and Sokal (1985) 54.1. 

0305-4470/86/130797 +09$02.50 @ 1986 The Institute of Physics L797 
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for N + m .  The relevant length scale is thus k = ( R L ) 1 ’ 2 - N ” .  The autocorrelation 
time of the Monte Carlo stochastic dynamics behaves asymptotically as 

r -  N P  (2) 

(or T - ( N ) ~  for algorithms working with chains of variable length); this defines a 
dynamic critical exponent p ,  which is the object of our study?. 

We first consider algorithms whose elementary moves are local N-conserving defor- 
mations of the chain (some examples are shown in ( a ) - ( g )  of figure 1). Algorithms 
of this type have been proposed by Verdier and Stockmayer (1962) and subsequently 
by many others$. Some of these algorithms and their properties are listed in table 1. 

Let us begin with a crude heuristic estimate of the autocorrelation time r for this 
class of algorithms. Consider the motion of the centre-of-mass vector of the chain. 
Very crudely speaking, this quantity executes a random walk, moving a distance of 
order 1/N at each elementary move. When it has finally moved a distance of order 
6 -  N ” ,  it seems reasonable to say that the chain has reached an ‘essentially new’ 
configuration. It takes about ( N O 2  - N2+2”  elementary moves for this to occur. We 
predict, therefore, that p = 2 + 2v. 

la) lbl 

( il 

Figure 1. Some examples of local elementary moves. ( a ) - ( g )  are N conserving. One-bead 
moves: ( a ) ,  180” kink-jump; ( b ) ,  90” end-bond rotation; ( c ) ,  180” end-bond rotation; 
two-bead moves: ( d ) ,  180” crankshaft; ( e ) ,  90” crankshaft ( d  2 3 only); (f), two-bead 
kink-jump; a three-bead move: (g),  three-bead L flip; non-N-conserving moves: ( h ) ,  
plaquette insertion (AN = +2); ( i ) ,  plaquette deletion (AN = -2). 

t In this letter we measure time in units of attempted elementary moves of the Monte Carlo algorithm 
(sometimes called ‘bead cycles’). Much of the literature on dynamic polymer chain models uses a timescale 
of attempted elementary moves per  bead; autocorrelation times expressed in this way should be multiplied 
by N (or N + 1) before comparing them to the present letter. The conventional exponent z is defined by 
p = ZU + 1. 
$ See, e.g., Heilmann (1968), Hilhorst and Deutch (1975), Verdier and Kranbuehl (1976), Birshtein et a1 
(1977), Taran and Stroganov (1978), Kranbuehl and Verdier (1979), Kremer er a1 (1981), Heilmann and 
Rotne (1982), Meirovitch (1984), Madras and Sokal(1985a) and references cited therein. Similar algorithms 
have been employed for continuum polymers; see, e.g., Baumgartner and Binder (1979) and Baumgartner 
(1980). 



Letter to the Editor L799 

Table 1. Some local N-conserving Monte Carlo algorithms 

Scheme References 

Autocorrelation 
time r 

Elementary moves (in elementary 
(see figure 1) moves) 

Verdier-Stockmayer 
(pure one-bead) 

Modified 
Verdier-Stockmayer 

Heilmann I 1  

Birshtein et al/ 
Heilmann-Rotne 3 

Taran- Stroganov 

Verdier-Kranbuehl 
(pure two-bead) 

Kranbuehl-Verdier 
(one- and two-bead) 

Verdier and Stockmayer (1962) (0). ( b )  - N”4 (?) 
Hilhorst and Deutch (1975) 

Lax and Brender (1977) 

Heilmann (1968) ( a ) ,  ( b ) ,  ( e )  
Heilmann and Rotne (1982) 
Gurler et a/ (1983) 

Heilmann and Rotne (1982) 

Hilhorst and Deutch (1975) ( a ) ,  ( b ) ,  ( c )  - N“4 (?) 

(?) N2+2” 

N2+2’ 7 ( . )  Birshtein et a/ (1977) ( a ) ,  ( b ) ,  ( d )  - 
( ?) Taran and Stroganov (1978) 

Boots and Deutch (1977) 

Kranbuehl and Verdier (1979, 1980) ( a ) ,  ( b ) ,  ( d ) ,  (f) - 
Romiszowski and Stockmayer (1984) 

- N2+2U 
( a ) ,  ( b ) ,  ( d ) ,  ( e )  

Verdier and Kranbuehl (1976) ( b ) ,  ( d ) ,  (f) -NS4 (?) 

(?) N 2 + 2 V  

This heuristic estimate has numerous limitations. 
(i)  It could be wrong if there are modes which relax essentially more slowly (i.e. 

with a larger dynamic critical exponent) than the centre-of-mass vector. 
(ii) It could be wrong if there are special conservation laws or quasi-conservation 

laws which inhibit the relaxation. This indeed occurs for the Verdier-Stockmayer (vs) 
and Verdier-Kranbuehl (VK) algorithms for the SAW and NRRW (but not the ORW); 
see Hilhorst and Deutch (1975) and Boots and Deutch (1977). It may also occur for 
some or all of the algorithms in dimension d = 3 as a result of ‘quasi-knots’ (Sokall986). 

(iii) In the SAW and NRRW cases, the centre-of-mass vector does not in fact execute 
a pure random walk; its successive moves are correlated. There are three a priori 
possibilities. 

(a) The successive moves are strongly positively (resp negatively) correlated, due 
to some important (probably local) physical mechanism ’which our argument fails to 
take into account. Then p could be significantly smaller (resp larger) than 2+2v .  This 
is what causes p > 2 + 2 v in the vs and VK models. 

(b) The successive moves are positively (resp negatively) correlated for global 
reasons arising out of the excluded-volume effect. In this case one would expect p to 
be slightly smaller (resp larger) than 2 + 2 v, with the error being roughly of order v - f. 

(c) The correlation between successive moves is irrelevant for the critical 
behaviour. Then p would be exactly equal to 2 + 2 v ;  only the critical amplitude would 
be affected by the correlation. 

Note, however, that what is relevant is not the correlation per se, but whether it 
gets radically stronger or weaker as N+m. 

Despite these limitations, this heuristic estimate also has some successes. 
(i)  It is exact in the ORW case ( v = i ,  p = 3); see Verdier (1966a,b, 1970,1973), Iwata 

and Kurata (1969), Orwoll and Stockmayer (1969) and Stockmayer et a1 (1971). It is 
probably also exact in the NRRW case. 
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(ii) It agrees with a heuristic estimate of p based on the balance between the elastic 
restoring force and viscous friction (De Gennes 1976). 

(iii) It agrees with renormalisation group calculations in dimension d = 4 - E to 
first order in E (Jasnow and Moore 1977, AI-Noaimi er a1 1978, Oono and Freed 1981, 
Shiwa and Kawasaki 1982t, Muthukumar 1983). Calculations to order E’ have 
apparently not yet been done. However, Oono and Freed (1981) and Muthukumar 
(1983) claim that p = 2 + 2 v  holds exactly. 

(iv) It agrees roughly with the results of most Monte Carlo studies in dimension 
d = 3  (Birshtein er a1 1977, Ceperley er al 1978, 1981, Baumgartner 1980, Gurler et a1 
1982, Meirovitch 1984). However, some studies differ (Kranbuehl and Verdier 1979, 
1980, Romiszowski and Stockmayer 1984). 

Remark 1 .  These models simulate the dynamics of a single polymer chain in a good 
solvent in the ‘free-draining’ limit i.e. neglecting hydrodynamic interactions. This limit 
does not correspond to any physically realisable situation, for in fact the hydrodynamic 
interactions always dominate the dynamics. For our present purposes this objection 
is irrelevant. 

Remark 2. Very recently, Madras and Sokal (1986a) have proved that every dynamic 
algorithm for the SAW (but not the NRRW or ORW) based on a finite repertoire of local 
N-conserving elementary moves is non-ergodic. It follows that the autocorrelation time 
T,  defined with respect to the usual (equal weight) SAW distribution, is infiniry: the 
correct equilibrium distribution is neuer reached. In these cases the foregoing heuristic 
argument has to be reinterpreted as referring to the relaxation time within one of the 
ergodic classes. The meaning of Y has to be reinterpreted analogously. 

Next, we consider algorithms which append and/or delete bonds at the endpoint(s) 
of the chain, such as the ‘slithering-snake’ (reptation) algorithm (Kron 1965, Kron et 
a1 1967, Wall and Mandel 1975, Mandel 1979) and the ‘slithering-tortoise’ algorithm 
(Berretti and Sokal 1985). In these algorithms the centre-of-mass vector moves a 
distance of order (RNI/  N - [/ N per elementary move, so that it takes a time of order 
N2 for the centre-of-mass vector to diffuse a distance of order [. The autocorrelation 
time T is thus expected to be of order N 2  (or ( N ) ’ ) ,  which is indeed what is observed 
(Mandel 1979, Berretti and Sokal 1985). 

Finally, we consider an algorithm proposed by Berg and Foerster (1981), Aragio 
de Carvalho and Caracciolo (1983) and Aragio de Carvalho er a1 (1983) (henceforth 
referred to as BFACF). This algorithm generates SAW (or NRRW) of variable length N 
which begin at the origin and end at a $xed lattice site x Z Oz. Its elementary moves 
are ( a ) ,  ( h )  and ( i )  of figure 1, which have AN =0, +2 and -2, respectively. The 
algorithm satisfies detailed balance with respect to a modified grand canonical ensemble 
in which each N-step walk gets relative weight Np N .  Here p is a user-chosen parameter 
satisfying O s p  dpCfit= l/p, where p is the connective constant of the lattice Z d  for 
SAW (or NRRW). This algorithm is of considerable interest, as it is the most efficient 
known way of generating SAW with fixed endpoints; such SAW are required for 

t Shiwa and Kawasaki do not explicitly mention the free-draining excluded-volume fixed point at U* = .rr2~/2, 
A* = 0, but it is easily deduced from their formulae that z = 4-  ~ / 4  there, in agreement with the other RG 

studies. 
f For SAW in dimension d = 3, the algorithm is ergodic only if / X I - =  max(lx,l, (x2(, Ix3() P 2 (Sokal 1986): if 
1x1, = 1 there exist knotted configurations which cannot be untied. 
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determining the critical exponent aSing and thereby testing the conjectured hyperscaling 
relation dv = 2 - cysing. 

The analysis of the BFACF dynamics appears to be quite subtle, even for the NRRW 

case. A AN = 0 move causes the centre-of-mass vector to move a distance of order 
1/ N. On the other hand, a AN = * 2  move causes the centre-of-mass vector to move 
an average distance of order S,/  N - 51 N, where S ,  - 5 - N” is the radius of gyration 
of the chain. One might assume, therefore, that the AN = * 2  moves dominate the 
relaxation, so that p = 2. But it is not so clear that the AN = *2 moves, which deform 
the chain perpendicular to itself, are as effective in promoting relaxation of the chain 
as the ‘slithering-snake’ and ‘slithering-tortoise’ moves, which extend and contract the 
chain along itself. So perhaps p = 2 + 2 v  after all. Nor is it clear that the centre-of-mass 
vector is the slowest relaxing mode (see below). 

There is a further subtlety in the BFACF dynamics, but to explain it we must first 
define more precisely what we mean by ‘autocorrelation time’. Let A be an observable 
and let 

be its normalised time-autocorrelation function in the stationary stochastic process 
(i.e. ‘in equilibrium’). Typically P A A ( f )  decays exponentially (-e-‘’T) for large t;  we 
define the exponential autocorrelation time 

and 

(In (5) the supremum is taken over all observables A with finite second moment.) 
Thus T , , ~  is the relaxation time of the slowest mode in the system and T e x p , ~  = T , , ~  for 
all observables A which are not ‘orthogonal’ to this slowest mode. We also define the 
integrated autocorrelation time 

It is this quantity which determines the statistical error bars in Monte Carlo measure- 
ments of (A)  (Binder 1979, ch 1, Berretti and Sokal 1985). 

The dynamic scaling hypothesis (Hohenberg and Halperin 1977) predicts that T ~ ~ ~ ,  

T e x p , ~  and 7int.A diverge at the critical point with the same dynamic critical exponent, 
at least for ‘reasonable’ observables A. However, this behaviour can fail for observables 
which are orthogonal to the slowest mode (typically by virtue of some symmetry) or 
asymptotically orthogonal to it (this typically occurs in models having a broad spectrum 
of relaxation times; see, e.g., Binder and Stauffer 1984, Madras and Sokal 1986b). In 
fact, as we now explain, the BFACF model falls into this latter category. 

Very recently, Sokal and Thomas (1986) have proved the surprising result that 
rex, = CO for the BFACF model at all P > O .  Their proof uses a minimum hitting time 
argument: the transition between a fixed short walk and an approximately square 
N-step walk ( N  large) takes a minimum time of order N2, but it turns out that the 
rarity of such long walks (- Np N, ‘justifies’ only a time of order N. From this it can 
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be shown that re,,, = 00: there are arbitrarily slowly relaxing modes associated with 
transitions to very long walks. Consequently, one expects that for ‘most’ observables 
A, the autocorrelation function PAA(  t )  will decay non-exponentially as t + (e.g. as a 
power law), so that rexp.A = 00. However, there is nothing to prevent  tint,^ from being 
finite and indeed one expects that T~,,, < 00 for ‘reasonable’ observables A, i.e. those 
that are not too strongly coupled to very long walks. It then makes sense to study the 
dynamic critical exponent pA defined by 7 in t .A  - (N)”A for P T P c r i t .  

To investigate this question, we performed a high precision Monte Carlo study of 
the BFACF dynamics for two-dimensional SAW and NRRW (with endpoint 1x1 = 1) over 
a range of values of p. We used the following variant of the BFACF algorithm: link 1 
is chosen at random and its direction is compared with that of the preceding ( p )  and 
following ( f )  links in the walk. We distinguish four cases (figure 2 of Arglo de 
Carvalho and Carcciolo (1983)): 

(I)  p and f are both perpendicular to 1, and p is not antiparallel to f ;  
(11) p is antiparallel to f (in this case, due to the constraints on our models, p and 

(111) either p orf  is parallel to 1, but not both; 
(IV) p ,  1 and f are parallel. 
We then consider the two possible deformations of the link 1 by one unit parallel 

f are necessarily both perpendicular to I ) ;  

to itself, and propose them with probabilities p ( A N )  given by 

d - 2 )  = 1/(1 + P ’ )  
p ( 0 )  = t 
p ( + 2 )  - P 2 / (  1 + P’ ) .  

(In cases 111 and IV these probabilities sum to less than one, and so a null transition 
is made with probability c,(III) = (1 -P2)/2(1 + p 2 )  or c,(IV) = ( 1  -p2)/(1 + p 2 ) ,  
respectively.) If, however, the proposed new walk would violate the constraint of the 
model (self-avoidance or non-immediate reversal, as the case may be), the proposal 
is rejected and a null transition is also made. There will, therefore, be two types of 
null transitions: those arising out of failure to propose a new configuration (cases I11 
and IV only) and those arising because the proposed new configuration violates the 
constraints of the model. We call these Monte Carlo rejections and constraint rejections, 
respectively. (It is important to realise that in the NRRW as well as the SAW there are 
constraint rejections: see figure 2 for a AN = -2  transition which is forbidden by the 
N R R W  constraint.) 

We performed the calculations on an IBM 3033 computer, using the CERN pseudo- 
random number generator RNDMZ.  Each Monte Carlo step took roughly 20 ps CPU 

I 

Figure 2. A A N  = -2 move which is forbidden by the NRRW constraint. 
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time for the NRRW or 30 ps for the SAW; the entire study used about 600 h of CPU 
time. We took data once every = ~ / 1 0  MC step (based on a guess for T ) .  We discarded 
the data from the first = 1007 MC steps in order to guarantee that complete equilibrium 
(i.e. a stationary stochastic process) had been reached. 

In table 2 we report the parameters of our runs and the observed rejection rates. 
In table 3 we report the estimated mean value ( N )  and autocorrelation times 7 i n t , ~  for 
the observables A = N, N' and N 3 ;  the final columns of table 3 give the estimated 
dynamic critical exponents pA. 

Table 2. Parameters of our runs and observed rejection rates. All times are measured in 
MC steps. Data discarded at the beginning of the run equal 1000 times the data-taking 
interval. 

Data-taking Monte Carlo Constraint 
Beta Run length interval rejection ( O h )  rejection (YO) 

NRRW 

0.278 1 . 2 5 ~ 1 0 ~  50 63.80 16.30 
0.303 1.25 x 10' 500 51.20 21.25 
0.318 7.5 x 10' 3000 41.54 24.00 
0.323 1.75 x io9 7000 37.66 24.86 
0.325 3.0 x io9 12 OOO 36.02 25.15 
0.3268 3.75 x io9 15 000 34.29 25.39 
0.3278 5.5 x io9 22 000 33.39 25.53 

SAW 

0.335 2.5 x 10' 50 64.10 13.20 
0.355 3.0 x 10' 400 56.57 14.86 
0.369 3.5 x109 7 000 47.91 15.66 
0.3728 8.5 x io9 17 000 44.32 15.67 
0.3744 1.65 x 10" 22 000 42.42 15.60 
0.376 3.5 x 10'O 140 000 39.98 15.45 

Let us explain briefly our statistical methods. We estimate the mean value ( A )  by 
the sample mean A = (1/ N )  X E l  A( i ) ,  the unnormalised autocorrelation function 
C A A (  t )  = (A(O)A( t ) )  - (A)' by the sample unnormalised autocorrelation function 

and the normalised autocorrelation function pAA( t )  = C A A (  t ) /  C,(O) by the sample 
normalised autocorrelation function bAA( t) = 3 A A (  t ) /  eAA(0). Here A( l) ,  . . . , A( N )  
are the observed values of the observable A for the non-discarded part of the run. We 
then estimate 7 i n t , ~  by 

where the 'window width' T is chosen self-consistently to be equal to 5$i,t,A. The 
standard deviation of the estimator is roughly 27int,A( T / N ) " * ;  this formula is 
based on the very crude assumption that the stochastic process { A (  t ) }  is approximately 
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Table 3. Estimates of pN,  pN1 and p N )  are based on a weighted least-squares fit to the data 
from the indicated and all higher values of B. Error bars are *2 standard deviations. 

Beta (N) Tint ,N 7,”t.N’ 7 tn t ,N3  P N  p N 1  PN’  

NRRW 

0.278 5.87i0.08 ( 6 . 9 i 0 . 5 ) ~  10’ ( 8 . 6 i 0 . 7 ) ~  lo2 ( 8 . 5 1 0 . 7 ) ~  lo2 2.42i0.06 2.42i0.07 2.42i0.08 
0.303 10.91i0.11 (3.3iO.2)+1O3 ( 5 . 9 i 0 . 5 ) ~  lo3 (8.1i0.8)X103 2.38*0.08 2.24i0.11 2.11i0.12 
0.318 21.76i0.21 ( 1 . 8 i O . l ) ~  lo4 (2.7i0.2)x104 ( 3 . 0 i 0 . 2 ) ~  lo4 2.3OiO.14 2.1910.18 2.14i0.18 
0.323 32.67i0.35 ( 5 . l i 0 . 3 ) ~  IO4 ( 7 . 0 i 0 . 6 ) ~  lo4 ( 8 . 7 1 0 . 7 ) ~  lo4 2.1010.25 1.88i0.30 1.72i0.34 
0.325 40.92i0.43 (8.71O.5)xlO4 ( 1 . 3 1 0 . 1 ) ~  lo5 (1.5iO.l)xlO’ 1.95i0.42 1.71i0.46 1.3410.57 
0.3268 51.81 i0 .63  ( 1 . 4 i  0.1) x lo’ (2.01 0.1) X 10’ ( 2 . 2 i  0.2) X lo5 1.72 X 1.19 1.45 X 1.29 0.98 i 1.51 
0.3278 59.69i0.66 (1.8iO.l)xlO’ (2.5iO.2)xlO5 (2.6i0.2)XlO’ - - - 

SAW 

0.335 5.73 10.07 (6.0i0.3) x 10’ (l.OiO.1) x lo3 ( 1 . 2 i  0.1) x lo3 3.15i0.05 3.15 i0 .07  3.16i0.07 
0.355 9.7010.19 (6.0iO.2)xlO3 ( 1 . 3 i 0 . 0 6 ) ~  lo4 (1.5i0.O8)xlO4 2.95i0.06 2.88i0.09 2.89i0.09 
0.369 21.5110.31 (5.7i0.2)x1O4 ( 1 . 1 i O . 0 5 ) ~  lo5 (1.3i0.07)X105 3.09i0.13 3.09*0.17 3.02i0.19 
0.3728 33.5310.53 ( 2 . 3 i 0 . 1 ) ~  lo5 ( 4 . 8 i 0 . 3 ) ~  10’ ( 5 . 9 i 0 . 4 ) ~  IO5 3.09i0.25 2.9210.36 23410.39 
0.3744 44.39i0.86 ( 5 . 0 i 0 . 3 ) ~  lo5 ( 9 . 0 1 0 . 7 ) ~  10’ (1.OiO.l)x lo6 3.3610.49 3.55i0.67 3.64i0.70 
0.376 65.74i1.64 (1.9iO.14)X1O6 (3.61O.4)X1O6 (4.3iO.5)X1O6 - - - 

Gaussian. Further details on the statistical analysis of autocorrelated time series can 
be found in the books of Priestley (1981), Anderson (1971) and Jenkins and Watts 
(1968), among others. Finally, we estimate the exponent p A  by a weighted least-squares 
fit to the data, using the ansatz 

and using weights inversely proportional to the estimated variances (squared standard 
deviations) of log 4int,A. In this analysis we ignore the statistical errors in ( N ) ,  since 
they are negligible compared to those in Tint,+ 

The results of this analysis (table 3) are at least consistent with the idea that the 
exponents pA are the same for A =  N, N 2 ,  N 3 ;  only the proportionality constant cA 
depends on the particular observable A. Our final estimates are 

p = 2.2 * 0.5 (NRRW) (loa) 

p = 3.0 f 0.4 (SAW) ( lob)  

and 

(95% subjective confidence limits). We have not attempted to specify separate system- 
atic and statistical errors, because they seem hopelessly entangled. These estimates 
for p are significantly below 2 + 2 u ,  which is 3.0 for the N R R W  and 3.5 for the SAW. 

In conclusion, we find that the expected relation p = 2 + 2 U, although not completely 
ruled out, seems to be highly unlikely. As a result, the dynamic critical behaviour of 
the BFACF model remains somewhat mysterious. We hope that this letter could 
encourage further studies, both numerical and theoretical, in the difficult area of 
dynamic critical scaling. 

The research of one of the authors (ADS) was supported in part by NSF grant 
DMS-8400955. 
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